4.6 Article

Binding Characteristics of Trichoderma reesei Cellulases on Untreated, Ammonia Fiber Expansion (AFEX), and Dilute-Acid Pretreated Lignocellulosic Biomass

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 108, Issue 8, Pages 1788-1800

Publisher

WILEY-BLACKWELL
DOI: 10.1002/bit.23140

Keywords

cellulase; enzyme binding; lignocellulosic biomass; AFEX; dilute acid pretreatment; corn stover; Langmuir adsorption

Funding

  1. US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-FC02-07ER64494]
  2. Board of Regents of the University of Wisconsin System [DE-FC02-07ER64494]
  3. US Department of Energy [DE-FC02-07ER64494]
  4. U.S. Department of Energy (DOE) [DE-FC02-07ER64494] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Studying the binding properties of cellulases to lignocellulosic substrates is critical to achieving a fundamental understanding of plant cell wall saccharification. Lignin auto-fluorescence and degradation products formed during pretreatment impede accurate quantification of individual glycosyl hydrolases (GH) binding to pretreated cell walls. A high-throughput fast protein liquid chromatography (HT-FPLC)-based method has been developed to quantify cellobiohydrolase I (CBH I or Cel7A), cellobiohydrolase II (CBH II or Cel6A), and endoglucanase I (EG I or Cel7B) present in hydrolyzates of untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated corn stover (CS). This method can accurately quantify individual enzymes present in complex binary and ternary protein mixtures without interference from plant cell wall-derived components. The binding isotherms for CBH I, CBH II, and EG I were obtained after incubation for 2 h at 4 degrees C. Both AFEX and dilute acid pretreatment resulted in increased cellulase binding compared with untreated CS. Cooperative binding of CBH I and/or CBH II in the presence of EG I was observed only for AFEX treated CS. Competitive binding between enzymes was found for certain other enzyme-substrate combinations over the protein loading range tested (i.e., 25-450 mg/g glucan). Langmuir single-site adsorption model was fitted to the binding isotherm data to estimate total available binding sites E(bm) (mg/g glucan) and association constant K(a) (L/mg). Our results clearly demonstrate that the characteristics of cellulase binding depend not only on the enzyme GH family but also on the type of pretreatment method employed. Biotechnol. Bioeng. 2011;108: 1788-1800. (C) 2011 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available