4.8 Article

Remote loading of liposomes with a I-124-radioiodinated compound and their in vivo evaluation by PET/CT in a murine tumor model

Journal

THERANOSTICS
Volume 8, Issue 21, Pages 5828-5841

Publisher

IVYSPRING INT PUBL
DOI: 10.7150/thno.26706

Keywords

remote loading; pH-gradient liposomes; transmembrane ammonium sulfate; iodinated imaging agents; I-124; PET imaging

Ask authors/readers for more resources

Long circulating liposomes entrapping iodinated and radioiodinated compounds offer a highly versatile theranostic platform. Here we report a new methodology for efficient and high-yield loading of such compounds into liposomes, enabling CT/SPECT/PET imaging and I-131-radiotherapy. Methods: The CT contrast agent diatrizoate was synthetically functionalized with a primary amine, which enabled its remote loading into PEGylated liposomes by either an ammonium sulfate- or a citrate-based pH transmembrane gradient. Further, the amino-diatrizoate was radiolabeled with either I-124 (t(1/ 2) = 4.18 days) for PET or I-125 (t(1/ 2) = 59.5 days) for SPECT, through an aromatic Finkelstein reaction. Results: Quantitative loading efficiencies (>99%) were achieved at optimized conditions. The I-124-labeled compound was remote-loaded into liposomes, with an overall radiolabeling efficiency of 77 +/- 1%, and imaged in vivo in a CT26 murine colon cancer tumor model by PET/CT. A prolonged blood circulation half-life of 19.5 h was observed for the radiolabeled liposomes, whereas injections of the free compound were rapidly cleared. Lower accumulation was observed in the spleen, liver, kidney and tumor than what is usually seen for long-circulating liposomes. Conclusion: The lower accumulation was interpreted as release of the tracer from the liposomes within these organs after accumulation. These results may guide the design of systems for controlled release of remote loadable drugs from liposomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available