4.6 Article

Mutants of the Pentose-Fermenting Yeast Pichia stipitis With Improved Tolerance to Inhibitors in Hardwood Spent Sulfite Liquor

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 104, Issue 5, Pages 892-900

Publisher

WILEY
DOI: 10.1002/bit.22449

Keywords

biomass; ethanol; fermentation; lignocellulose; mutants; Pichia Stiptis; spent sulfite liquor (SSL); tolerance; yeast

Funding

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada.

Ask authors/readers for more resources

Mutants of Pichia stipitis NRRL Y-7124 able to tolerate and produce ethanol from hardwood spen sulfite liquor (HW SSL) were obtained by UV mutagenesis. P. stipitis cells were subjected to three successive rounds of UV mutagenesis, each followed by screening first on HW SSL gradient plates and then in diluted liquid HW SSL. Six third generation mutants with greater tolerance to HW SSL as compared to the wild type (WT) were isolated. The WT strain could not grow in HW SSL unless it was diluted to 65% (v/v). In contrast, the third generation mutants were able to grow in HW SSL diluted to 75% (v/v). Mutants PS301 and PS302 survived even in 80% (v/v) HW SSL, although there was no increase in cell number. All the third generation mutants exhibited higher growth rates but significantly lower growth yields on oxylose or glucose compared to the WT. The mutants fermented 4% (w/v) glucose as efficiently as the WT and fermented 4% (w/v) xylose more efficiently with a higher ethanol yield than the WT. In a medium containing 4% (w/v) each of xylose and glucose, all the third generation mutants utilized glucose as efficiently and xylose more efficiently than the WT. This resulted in higher ethanol yield by the mutants. The mutants retained the ability to utilize galactose and mannose and ferment them to ethanol. Arabinose was consumed slowly by both the mutants and WT with no ethanol production. In 60% (v/v) HW SSL, the mutants utilized and fermented glucose, mannose, galactose and xylose while the WT could not ferment any of these sugars. Biotechnol. Bioeng. 2009;104: 892-900. (C) 2009 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available