4.6 Article

Poly(lactic-co-glycolic acid) nanospheres and microspheres for short- and long-term delivery of bioactive ciliary neurotrophic factor

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 100, Issue 5, Pages 1010-1019

Publisher

WILEY-BLACKWELL
DOI: 10.1002/bit.21822

Keywords

nanospheres; microspheres; CNTF; PLGA; neural stem cells

Ask authors/readers for more resources

Ciliary neurotrophic factor (CNTF) has been shown to be neuroprotective in the central nervous system (CNS). However; systemic administration and bolus injections have shown significant side effects and limited efficacy. Sustained, local delivery may lead to effective neuroprotection and avoid or limit adverse side effects, but sustained CNTF delivery has proven difficult to achieve and control. For controlled, sustained delivery, we investigated several processing variables in making poly(DL-lactic-co-glycolic acid) (PLGA) nano- and microspheres to optimize CNTF encapsulation and release. Nano- and microspheres were 314.9 +/- 24.9 nm and 11.69 +/- 8.16 mu m in diameter, respectively. CNTF delivery from nanospheres was sustained over 14 days, and delivery from microspheres continued over more than 70 days. To assess protein bioactivity after encapsulation, neural stem cells (NSCs) were treated with CNTF released from nanospheres and compared to those treated with unencapsulated CNTF as a control. NSCs treated with CNTF expressed markers specific to mature cells, notably astrocytes; some increase in oligodendrocytic and neuronal marker expression was also observed. Significantly, cells treated with CNTF released by nanospheres exhibited a similar degree of differentiation when compared to those treated with control CNTF of equivalent concentration, showing that the process of protein encapsulation did not reduce its potency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available