4.6 Article

Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 99, Issue 5, Pages 1186-1204

Publisher

WILEY
DOI: 10.1002/bit.21665

Keywords

transcriptome; proteome; microarray; cell culture; protein secretion; recombinant protein

Funding

  1. NIGMS NIH HHS [GM08347] Funding Source: Medline

Ask authors/readers for more resources

Sodium butyrate has been known to increase the specific productivity of recombinant proteins in mammalian cells. In quest of physiological mechanisms leading to the increased productivity, DNA microarray and two dimensional gel electrophoresis (2DE) were used to assess the response of Chinese hamster ovary (CHO) and a mouse hybridoma cell (MAK) to butyrate treatment at the transcriptome and proteome level. The expression of the orthologous genes represented on both CHO cDNA and mouse Affymetrix microarray, as well as genes in the same ontological class were compared. Only a relatively small number of orthologs changed their expression consistently between the two cell lines, however, at a functional class level many genes involved in cell cycle and apoptosis were affected in both cell lines. Furthermore, a large number of genes involved in protein processing, secretion and redox activity were upregulated in both CHO and MAK cells. More genes showed a consistent trend of change at both transcript and protein levels than those which showed opposite trend in MAK cells. Overall the results suggested that them changes arising in the protein processing machinery may be responsible for the increased productivity upon butyrate treatment in both CHO and MAK cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available