4.3 Article

Exploring the potential of megaprimer PCR in conjunction with orthogonal array design for mutagenesis library construction

Journal

BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY
Volume 60, Issue 2, Pages 190-195

Publisher

WILEY-BLACKWELL
DOI: 10.1002/bab.1065

Keywords

PCR optimization; orthogonal array; mutagenesis efficiency

Funding

  1. National Natural Science Foundation of China [20872014]

Ask authors/readers for more resources

Although megaprimer PCR mutagenesis has been used routinely in protein directed evolution, users sometimes encounter technical hurdles, particularly inefficiency during amplification when large fragments are used or the template is difficult to be amplified. Instead of methodology development, here we simply overcome the limitation by optimizing megaprimer PCR conditions via orthogonal array design of the four PCR components in three levels of each: template, primer, Mg2+, and dNTPs. For this, only nine PCRs need to be performed. The strategy (termed as OptiMega) was not only successfully applied for the construction of one multiple-site saturation mutagenesis library of halohydrin dehalogenase HheC, which failed to be constructed previously using the standard QuikChange protocol, but also expanded the construction of two high-quality random mutagenesis libraries of HheA and HheC. Most importantly, OptiMega offers a quick and simple way of constructing random mutagenesis libraries by eliminating the ligation step. Our results demonstrated that the OptiMega strategy could greatly strengthen the potential of megaprimer PCR mutagenesis for library construction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available