4.6 Article

Profiling of phytohormones in rice under elevated cadmium concentration levels by magnetic solid-phase extraction coupled with liquid chromatography tandem mass spectrometry

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1406, Issue -, Pages 78-86

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2015.06.046

Keywords

Phytohormones; Sample preparation; Magnetic solid-phase extraction; Cadmium stress; Mass spectrometry

Funding

  1. National Natural Science Foundation of China [21475098, 91217309]
  2. Natural Science Foundation of Hubei Province, China [2014CFA002]
  3. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Phytohormones, a collection of signal small molecules with various structures, regulate a series of physiological processes of plants. For instance, they regulate the growth and development, response to biotic and abiotic stresses. Quantification of trace endogenous phytohormones is essential to elucidate their molecular mechanisms in response to stresses. However, the structural and chemical diversity of phytohormones make it difficult to purify and enrich multiple phytohormones inane-step. In the current study, a method was developed to comprehensively profile phytohormones, including 8 cytokinins (CKs), indole-3-acetic acid (IAA), abscisic acid (ABA), jasmonic acid (JA) and 10 gibberellins (GAs) by Fe3O4@TiO2-based magnetic solid-phase extraction coupled with ultra-performance liquid chromatography-electrospray tandem mass spectrometry (Fe3O4@TiO2-based MSPE-UPLC-MS/MS). In the proposed method, the phytohormones in the acetonitrile extract of plant tissues were captured and purified by one-step MSPE using Fe3O4@TiO2 as a sorbent prior to UPLC-MS/MS analysis. The sensitivity, accuracy and reproducibility of the proposed analytical method were demonstrated to satisfy the profiling of multiple phytohormones in plant tissue. We then further used the Fe3O4@TiO2-based MSPE-UPLC-MS/MS method to explore the change of phytohormones in rice under Cd stress. The results showed that CKs, IAA, ABA, JA and biological active GAs all increased under Cd stress, suggesting that these phytohormones may take part in response to Cd stress. The study may promote the further understanding of the physiological functions of phytohormones in response to Cd stress. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available