4.7 Article

Energy-Efficient Scheduling for a Job Shop Using an Improved Whale Optimization Algorithm

Journal

MATHEMATICS
Volume 6, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/math6110220

Keywords

energy-efficient job shop scheduling; dispatching rule; nonlinear convergence factor; mutation operation; whale optimization algorithm

Categories

Funding

  1. Training Foundation of Shandong Natural Science Foundation of China [ZR2016GP02]
  2. National Natural Science Foundation Project of China [61403180]
  3. Special Research and Promotion Program of Henan Province [182102210257]
  4. Project of Henan Province Higher Educational Key Research Program [16A120011]
  5. Project of Shandong Province Higher Educational Science and Technology Program [J17KA199]
  6. Talent Introduction Research Program of Ludong University [32860301]

Ask authors/readers for more resources

Under the current environmental pressure, many manufacturing enterprises are urged or forced to adopt effective energy-saving measures. However, environmental metrics, such as energy consumption and CO2 emission, are seldom considered in the traditional production scheduling problems. Recently, the energy-related scheduling problem has been paid increasingly more attention by researchers. In this paper, an energy-efficient job shop scheduling problem (EJSP) is investigated with the objective of minimizing the sum of the energy consumption cost and the completion-time cost. As the classical JSP is well known as a non-deterministic polynomial-time hard (NP-hard) problem, an improved whale optimization algorithm (IWOA) is presented to solve the energy-efficient scheduling problem. The improvement is performed using dispatching rules (DR), a nonlinear convergence factor (NCF), and a mutation operation (MO). The DR is used to enhance the initial solution quality and overcome the drawbacks of the random population. The NCF is adopted to balance the abilities of exploration and exploitation of the algorithm. The MO is employed to reduce the possibility of falling into local optimum to avoid the premature convergence. To validate the effectiveness of the proposed algorithm, extensive simulations have been performed in the experiment section. The computational data demonstrate the promising advantages of the proposed IWOA for the energy-efficient job shop scheduling problem.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available