4.8 Article

The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for Water-in-Salt electrolytes

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 11, Issue 12, Pages 3491-3499

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ee02456a

Keywords

-

Funding

  1. Ecole normale superieure (Paris)
  2. UPMC, CNRS
  3. C'Nano projects of the Region Ile-de-France

Ask authors/readers for more resources

Aqueous Li-ion batteries have long been envisioned as safe and green energy storage technology, but have never been commercially realized owing to the limited electrochemical stability window of water, which drastically hampers their energy density. Recently, Water-in-Salt electrolytes (WiSEs) in which a large amount of organic salt is dissolved into water were proposed to allow for assembling 3 V Li-ion batteries. Hereby, our attention focused on the fate of water at the electrochemical interface under negative polarization and the potential reactivity of TFSI anions with products originating from the water reduction. Hence, combining analysis of bulk electrolytes with electrochemical measurements on model electrodes and operando characterization, we were able to demonstrate that hydroxides generated during the hydrogen evolution reaction can chemically react with TFSI and catalyze the formation of a fluorinated solid-electrolyte interphase (SEI) that prevents further water reduction. Mastering this new SEI formation path with the chemical degradation of TFSI anions mediated by the electrochemical reduction of water can therefore open new avenues for the future development of not only WiSEs but also Li batteries functioning in organic electrolytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available