4.6 Article

Quantification of volatile-alkylated selenium and sulfur in complex aqueous media using solid-phase microextraction

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1407, Issue -, Pages 11-20

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2015.06.054

Keywords

Selenium; Sulfur; SPME; GC/MS; Methylation

Ask authors/readers for more resources

Biologically produced volatile-alkylated Se and S compounds play an important role in the global biogeochemical Se and S cycles, are important constituents of odorous industrial emissions, and contribute to (off-)flavors in food and beverages. This study presents a fully automated direct-immersion solid-phase microextraction (DI-SPME) method coupled with capillary gas chromatography-mass spectrometry (GC/MS) for the simultaneous quantification of 10 volatile-alkylated Se and S compounds in complex aqueous media. Instrumental parameters of the SPME procedure were optimized to yield extraction efficiencies of up to 96% from complex aqueous matrices. The effects of sample matrix composition and analyte transformation during sample storage were critically assessed. With the use of internal standards and procedural calibrations, the DI-SPME-GC/MS method allows for trace-level quantification of volatile Se and S compounds in the ng/L range (e.g. down to 30 ng/L dimethyl sulfide and 75 ng/L dimethyl selenide). The applicability and robustness of the presented method demonstrate that the method may be used to quantify volatile Se and S compounds in complex aqueous samples, such as industrial effluents or food and beverage samples. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available