4.8 Review

Invited review article: Metal-additive manufacturing-Modeling strategies for application-optimized designs

Journal

ADDITIVE MANUFACTURING
Volume 22, Issue -, Pages 758-774

Publisher

ELSEVIER
DOI: 10.1016/j.addma.2018.06.024

Keywords

Metal additive manufacturing; 3D printing; Thermomechanical modeling; Finite element methods; Residual stress

Funding

  1. National Science Foundation [CMMI 1538851]
  2. NIAMS - National Institute of Health [R01 AR067306-01A1]
  3. NATIONAL INSTITUTE OF ARTHRITIS AND MUSCULOSKELETAL AND SKIN DISEASES [R01AR067306] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Next generation, additively-manufactured metallic parts will be designed with application-optimized geometry, composition, and functionality. Manufacturers and researchers have investigated various techniques for increasing the reliability of the metal-AM process to create these components, however, understanding and manipulating the complex phenomena that occurs within the printed component during processing remains a formidable challenge limiting the use of these unique design capabilities. Among various approaches, thermomechanical modeling has emerged as a technique for increasing the reliability of metal-AM processes, however, most literature is specialized and challenging to interpret for users unfamiliar with numerical modeling techniques. This review article highlights fundamental modeling strategies, considerations, and results, as well as validation techniques using experimental data. A discussion of emerging research areas where simulation will enhance the metal-AM optimization process is presented, as well as a potential modeling workflow for process optimization. This review is envisioned to provide an essential framework on modeling techniques to supplement the experimental optimization process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available