4.7 Article

Optimised hydrodynamic parameters for the design of photobioreactors using computational fluid dynamics and experimental validation

Journal

BIOSYSTEMS ENGINEERING
Volume 122, Issue -, Pages 42-61

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.biosystemseng.2014.03.006

Keywords

Algae biomass concentration; Circulation time; Computational fluid dynamics (CFD); Particle image velocimetry (PIV); Dead zones; Turbulence intensity

Ask authors/readers for more resources

A numerical simulation using computational fluid dynamics (CFD) was utilised to investigate the flow hydrodynamics of cylindrical bubble column type photobioreactors (PBRs) with a 301 culture medium. To establish the reliability of the simulation study, the CFD model was validated using particle image velocimetry (PIV) computed data under various air flow rates. There were 32 simulation cases for the study comprising two PBR designs, four air flow rates and four nozzle size diameters. Hydrodynamic analyses such as % volume of dead zones, average circulation time and turbulence intensity inside the simulated PBRs were evaluated. Results have shown that the most appropriate PBR for microalgae cultivation was a design with internal baffle and an extended cone-shaped bottom section. In addition, the recommended nozzle diameter was found to be 10 mm and a minimum air flow rate of 0.10 vvm. To eliminate dead zones inside the PBR, the flow rate can be slightly increased but should not exceed 0.15 vvm. Practical evaluation through laboratory experiments has further confirmed the results of the study where the biomass concentration of Chlorella vulgaris from the proposed PBR was significantly higher compared to the standard PBR design. Based on the numerical investigation and practical evaluation, the improved PBR can be seen to be more effective in culturing microalgae particularly for larger scale mass production. (c) 2014 IAgrE. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available