4.3 Article Proceedings Paper

Preservation of dynamic properties in qualitative modeling frameworks for gene regulatory networks

Journal

BIOSYSTEMS
Volume 112, Issue 2, Pages 171-179

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biosystems.2013.03.001

Keywords

Gene regulatory networks; Mathematical modeling; Qualitative modeling; Discrete models; Piecewise affine differential equation; models

Ask authors/readers for more resources

Mathematical modeling often helps to provide a systems perspective on gene regulatory networks. In particular, qualitative approaches are useful when detailed kinetic information is lacking. Multiple methods have been developed that implement qualitative information in different ways, e.g., in purely discrete or hybrid discrete/continuous models. In this paper, we compare the discrete asynchronous logical modeling formalism for gene regulatory networks due to R. Thomas with piecewise affine differential equation models. We provide a local characterization of the qualitative dynamics of a piecewise affine differential equation model using the discrete dynamics of a corresponding Thomas model. Based on this result, we investigate the consistency of higher-level dynamical properties such as attractor characteristics and reachability. We show that although the two approaches are based on equivalent information, the resulting qualitative dynamics are different. In particular, the dynamics of the piecewise affine differential equation model is not a simple refinement of the dynamics of the Thomas model (C) 2013 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available