4.3 Article

Influence of time delay and channel blocking on multiple coherence resonance in Hodgkin-Huxley neuron networks

Journal

BIOSYSTEMS
Volume 106, Issue 2-3, Pages 76-81

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biosystems.2011.07.001

Keywords

Neuron; Channel blocking; Noise; Newman-Watts network; Time delay; Coherence resonance

Funding

  1. Natural Science Foundation of Shandong Province of China [ZR2009AM016]

Ask authors/readers for more resources

Toxins such as tetraethylammonium (TEA) and tetrodotoxin (TTX) may reduce the number of working potassium and sodium ion channels by poisoning and making them blocked, respectively. In this paper, we study how channel blocking (CB) affects the time delay-induced multiple coherence resonance (MCR), i.e., a phenomenon that the spiking of neuronal networks intermittently reaches the most ordered state, in stochastic Hodgkin-Huxley neuron networks. It is found that potassium and sodium CB have distinct effects. For potassium CB, the MCR occurs more frequently as the CB develops, but for sodium CB the MCR is badly impaired and only the first coherence resonance (CR) holds and, consequently, the MCR evolves into a single CR as sodium CB develops. We found for sodium CB the spiking becomes disordered at larger delay lengths, which may be the reason for the destruction of the MCR. The underlying mechanism is briefly discussed in terms of distinct effects of potassium and sodium CB on the spiking activity. These results show that potassium CB can increase the frequency of MCR with time delay, but sodium CB may suppress and even destroy the delay-induced MCR. These findings may help to understand the joint effects of CB and time delay on the spiking coherence of neuronal networks. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available