4.3 Article

Comparative protein analysis of the chitin metabolic pathway in extant organisms: A complex network approach

Journal

BIOSYSTEMS
Volume 101, Issue 1, Pages 59-66

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biosystems.2010.04.006

Keywords

Chitin; Comparative genomics; Complex networks

Ask authors/readers for more resources

Chitin is a structural endogenous carbohydrate, which is a major component of fungal cell walls and arthropod exoskeletons. A renewable resource and the second most abundant polysaccharide in nature after cellulose, chitin is currently used for waste water clearing, cosmetics, medical, and veterinary applications. This work comprises data mining of protein sequences related to the chitin metabolic pathway of completely sequenced genomes of extant organisms pertaining to the three life domains, followed by meta-analysis using traditional sequence similarity comparison and complex network approaches. Complex networks involving proteins of the chitin metabolic pathway in extant organisms were constructed based on protein sequence similarity. Several usual network indices were estimated in order to obtain information on the topology of these networks, including those related to higher order neighborhood properties. Due to the assumed evolutionary character of the system, we also discuss issues related to modularity properties, with the concept of edge betweenness playing a particularly important role in our analysis. Complex network approach correctly identifies clusters of organisms that belong to phylogenetic groups without any a priori knowledge about the biological features of the investigated protein sequences. We envisage the prospect of using such a complex network approach as a high-throughput phylogenetic method. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available