4.7 Review

A review on the heterostructure nanomaterials for supercapacitor application

Journal

JOURNAL OF ENERGY STORAGE
Volume 17, Issue -, Pages 181-202

Publisher

ELSEVIER
DOI: 10.1016/j.est.2018.03.006

Keywords

Heterostructure; Hybridization; Supercapacitor; Carbonaceous materials; Redox materials; Doping

Categories

Funding

  1. Council of Scientific and Industrial Research, New Delhi, India [MLP210812]

Ask authors/readers for more resources

The typical physical and chemical properties lead the nanomaterials to breakthrough in the field of energy storage especially, supercapacitor applications. The optimization of electrical conductivity, structural flexibility, band gap and charge carrier mobility are the key point to solve the issues in the electrochemical charge storage mechanism of supercapacitor. The semiconducting heterostructured nanomaterials are the best choice to store energy by near-surface ion adsorption along with additional contribution from fast reversible faradic reactions. The creation of active sites and defects in the grain boundary of the heterostructure materials results in multiple redox activity, superior ionic conductivity and short diffusion path. Therefore, sufficient researches enrooted to the doped and nano heterostructure electrode materials needs to be performed in order to exploit the high power and energy storage applications. This article reviews current trends in the synthesis of heterostructure electrode through hybridization of different electrochemical double layer capacitance (EDLC) and pseudocapacitive materials. This article also emphasize on the effect of doping on the electrode possessing both EDLC as well as the pseudocapacitance. In addition, the advantages of superlattice structure for the superior electrochemical properties are also discussed. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available