4.7 Article

Highly sensitive, durable and stretchable plastic strain sensors using sandwich structures of PEDOT:PSS and an elastomer

Journal

MATERIALS CHEMISTRY FRONTIERS
Volume 2, Issue 2, Pages 355-361

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7qm00497d

Keywords

-

Ask authors/readers for more resources

Thin-film plastic'' strain sensors can be mounted closely on textile clothing or human skin comfortably to detect human activities without any harm to the human body. However, it is a grand challenge to prepare highly sensitive and durable plastic strain sensors. Herein, we report a high-performance plastic strain sensor with a sandwich structure of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) doped with poly(vinyl alcohol) (PVA-PEDOT:PSS)/highly conductive PEDOT:PSS/polydimethylsiloxane elastomer. The strain sensor exhibited not only high sensitivities but also good durability at large strains owing to its robust structure integration and strong recoverability in conductance. More importantly, our plastic strain sensors are successfully used to monitor a series of human activities including joint/muscle motions, arterial pulsation and voice vibration, and distinguish some complex and diverse bending motions, demonstrating great potential in practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available