4.8 Article

Aptamer functionalized MoS2-rGO nanocomposite based biosensor for the detection of Vi antigen

Journal

BIOSENSORS & BIOELECTRONICS
Volume 122, Issue -, Pages 121-126

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2018.09.015

Keywords

Aptamers; MoS2-rGO nanocomposite; Square wave voltammetry (SWV); Ferrocene-boronic acid; Vi capsular polysaccharide

Funding

  1. Council for Scientific and Industrial Research (CSIR), India [81253/2K15/1]

Ask authors/readers for more resources

We report a novel aptamer functionalized MoS2-rGO based electrochemical method for Vi polysaccharide antigen mediated detection of enteric fever. Herein, highly selective anti-Vi aptamers were screened from a pool of oligonucleotides using a microtitre based SELEX approach and characterized for its specificity and stability. The MoS2-rGO nanocomposite was synthesized using a liquid assisted exfoliation by taking optimum ratio of MoS2 and rGO. The nanocomposite presented synergistic effect owing to easy biomolecular functionalization and enhanced conductivity. The screened anti-Vi aptamers were embedded on the MoS2-rGO nanocomposite via thiol linkage to give a stable biointerface. The developed aptasensor was characterized and further evaluated for its performance with different concentrations of Vi antigen using ferrocene labeled boronic acid as an electroactive probe. The aptasensor responded linearly in the range between 0.1 ng mL I to 1000 ng mL(-1) with a detection limit of 100 pg mL(-1), and did not show any cross-reactivity with other bacterial polysaccharides indicating high specificity. The applicability of the developed aptasensor was further validated in urine and sera specimens spiked with Vi antigen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available