4.8 Review

Electrochemical and electrophoretic deposition of enzymes: Principles, differences and application in miniaturized biosensor and biofuel cell electrodes

Journal

BIOSENSORS & BIOELECTRONICS
Volume 58, Issue -, Pages 121-131

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2014.02.030

Keywords

Enzymes; Electrochemical and electrophoretic deposition; Miniaturized biosensor and biofuel cell electrodes

Funding

  1. University of Groningen

Ask authors/readers for more resources

Recent advances in nano-biotechnology have made it possible to realize a great variety of enzyme electrodes suitable for sensing and energy applications. In coating miniaturized electrodes with enzymes, there is no doubt that most of the available deposition processes suffer from the difficulty in depositing uniform and reproducible coatings of the active enzyme on the miniature transducer element. This mini-review highlights the promising prospects of two techniques, electrochemical deposition (ECD) and electrophoretic deposition (EPD), in enzyme immobilization onto miniaturized electrodes and their use as biosensors and biofuel cells. The main differences between ECD and EPD are described and highlighted in the sense to make it clear to the reader that both techniques employ electric fields to deposit enzyme but the conditions from which each process is achieved and hence the mechanisms are quite different. Many aspects dealing with deposition of enzyme under ECD and EPD are considered including surface charge of enzyme, its migration under the applied electric field and its precipitation on the electrode. Still all issues discussed in this mini-review are generic and need to be followed in the future by extensive theoretical and experimental research analysis. Finally, the advantages of ECD and EPD in fabrication of miniature biosensor and biofuel cell electrodes are described and discussed. (c) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available