4.8 Article

Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance

Journal

BIOSENSORS & BIOELECTRONICS
Volume 61, Issue -, Pages 83-87

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2014.05.005

Keywords

Vascular endothelial growth factor; Aptamer; Rolling circle amplification; Surface plasmon resonance

Funding

  1. National Natural Science Foundation of China [61275085, 31100560]

Ask authors/readers for more resources

Vascular endothelial growth factor (VEGF) is a major regulator of angiogenesis. It has been identified as an ideal biomarker for staging of many kinds of cancers, so more specific and intense signal is desirable for VEGF biosensors so that the sensors may have more valuable clinical application. Herein, we report a highly sensitive and selective surface plasmon resonance (SPR) sensor for VEGF detection by using two DNA aptamers which target different VEGF domains used as the capture and detection probe, respectively. Moreover, by making use of carboxyl-coated polystyrene microspheres, 3'-NH2 immobilized aptamer and 3'-NH2 modified primer DNA are loaded through amidation onto the sensing layer for further rolling circle amplification (RCA) process to amplify the SPR signal. With the well-designed sensing platform, VEGF can be determined in a linear range from 100 pg mL(-1) to 1 mu g mL(-1) with a detection limit of 100 pg mL(-1). Due to its high specificity and desirable sensitivity, this RCA assisted SPR method may be a useful tool for the assay of VEGF in the future. What is more, by replacing the sensing element, i.e., the aptamer of VEGF used in this work, more biosensors for sensitive detection of other biomarkers proteins can be fabricated based on the strategy proposed in this study. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available