4.8 Article

Signal-on photoelectrochemical biosensor for microRNA detection based on Bi2S3 nanorods and enzymatic amplification

Journal

BIOSENSORS & BIOELECTRONICS
Volume 53, Issue -, Pages 232-237

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2013.09.069

Keywords

Photoelectrochemistry; MicroRNA detection; Visible light irradiation; Signal-on model; Bi2S3 nanorod

Funding

  1. National Natural Science Foundation of China [21075078, 21105056]
  2. Natural Science Foundation of Shandong province, China [ZR2010BM005, ZR2011BQ001]

Ask authors/readers for more resources

In this work, a photoelectrochemical (PEC) biosensor was fabricated for sensitive and specific detection of microRNA based on Bi2S3 nanorods and enzymatic signal amplification. Using the catalytic effect of alkaline phosphatase on L-ascorbic acid 2-phosphate trisodium salt (AAP), ascorbic acid (AA) was in situ generated and used as electron donor. Based on this, a signal-on protocol was successively achieved for microRNAs detection due to the dependence of photocurrent response on the concentration of electron donor of AA. The results demonstrated that the photocurrent response enhanced with increasing the hybridized concentration of microRNA. Under the amplification of the immunogold labeled streptavidin (SA-AuNPs), a low detection limit of 1.67 fM was obtained. The fabricated biosensor showed good detection stability and specificity, and it could discriminate only one-base mismatched microRNA sequence. Moreover, the down-regulated expression of microRNA-21 in DF-1 chicken fibroblast cells infected with subgroup J avian leukemia virus (ALVs) was confirmed by the developed method, indicating that microRNA-21 might be a new biomarker for avian leukemia. This work opens a different perspective for microRNAs detection and early diagnose of avian leukemia. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available