4.8 Article

A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine

Journal

BIOSENSORS & BIOELECTRONICS
Volume 42, Issue -, Pages 426-429

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2012.09.062

Keywords

Metal-organic frameworks; Gold nanoparticles; Electrochemistry; Electrochemical sensors; L-cysteine

Ask authors/readers for more resources

A novel electrochemical sensor based on Au-SH-SiO2 nanoparticles supported on metal-organic framework (Au-SH-SiO2@Cu-MOF) has been developed for electrocatalytic oxidation and determination of L-cysteine. The Au-SH-SiO2@Cu-MOF was characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and cyclic voltammetry. The electrochemical behavior of L-cysteine at the Au-SH-SiO2@Cu-MOF was investigated by cyclic voltammetry. The Au-SH-SiO2@Cu-MOF showed a very efficient electrocatalytic activity for the oxidation of L-cysteine in 0.1 M phosphate buffer solution (pH 5.0). The oxidation overpotentials of L-cysteine decreased significantly and their oxidation peak currents increased dramatically at Au-SH-SiO2@Cu-MOF. The potential utility of the sensor was demonstrated by applying it to the analytical determination of L-cysteine concentration. The results showed that the electrocatalytic current increased linearly with the L-cysteine concentration in the range of 0.02-300 mu M and the detection limit was 0.008 mu M. Finally, the sensor was applied to determine L-cysteine in water and biological samples. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available