4.8 Article

Graphene-based nanoprobes and a prototype optical biosensing platform

Journal

BIOSENSORS & BIOELECTRONICS
Volume 50, Issue -, Pages 251-255

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2013.06.039

Keywords

Graphene oxide (GO); Nanoprobe; Signal amplification; Immunoassay; Cancer marker

Funding

  1. National Basic Research Program of China [2013CB933800, 2012CB932600]
  2. National Science Foundation of China [91127037, 91123037, 21207059]
  3. Natural Science Foundation of Shandong Province [ZR2012BM021]
  4. Chinese Academy of Sciences

Ask authors/readers for more resources

Biochemical and biomedical applications of graphene are critically dependent on the interaction between biomolecules and the nanomaterial. In this work, we developed a graphene-based signal-amplification nanoprobe by combining anti-immunoglobulin G (anti-IgG) and horseradish peroxidase (HRP) with graphene oxide (GO). The structure and function of HRP in the nano-interface of GO were firstly investigated, which demonstrated that the enzyme retained 78% of its native activity and 77% of its native a-helix content HRP and anti-IgG were then co-adsorbed onto GO to form bifunctional nanoprobes. The nanoprobes provide both improved binding ability and signal-amplification ability. Comparing with conventional bioconjugates such as enzyme-linked antibody, co-adsorption could avoid chemical conjugation between biomolecules, keeping their bioactivity well. As an example for their application, the nanoprobes were used to obtain amplified signals in a sandwich-type immunoassay for cancer marker, instead of conventional colorimetric conjugates. This approach provided a detection limit of 10 pg/mL alpha-fetoprotein (AFP), which was much more sensitive than conventional enzyme-linked immunosorbent assay (ELISA) methods. The easily fabricated GO-based nanoprobes have the potential to become universal probes for molecular diagnostics. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available