4.7 Article

Gold-loaded graphene oxide/PDPB composites for the synchronous removal of Cr(VI) and phenol

Journal

CHINESE JOURNAL OF CATALYSIS
Volume 39, Issue 1, Pages 8-15

Publisher

SCIENCE PRESS
DOI: 10.1016/S1872-2067(17)62933-4

Keywords

Photocatalysis; Heavy metal ion; Organic pollutant; Polymer poly(diphenylbutadiyne); Synchronous removal

Funding

  1. National Natural Science Foundation of China [21577036, 21377038, 21237003, 21677048]
  2. National Basic Research Program of China (973 Program) [2013CB632403]
  3. State Key Research Development Program of China [2016YFA0204200]
  4. Fundamental Research Funds for the Central Universities [22A201514021]

Ask authors/readers for more resources

The construction of novel inorganic-organic hybrid nanomaterials for synchronous photocatalytic removal of heavy metal ions and organic pollutants has received significant attention. We successfully synthesized gold-loaded graphene oxide/PDPB (polymer poly(diphenylbutadiyne)) composites (Au-GO/PDPB) through a facile mechanical agitation and photoreduction method. The composites were characterized by XPS and TEM images, which confirmed the presence of GO and Au nanoparticles on the PDPB. The as-prepared Au-GO/PDPB composites displayed enhanced photocatalytic activity compared with that of pure PDPB for the synchronous photoreduction of hexavalent chromium (Cr(VI)) and photo-oxidation of phenol. We also determined the optimal loading mass of GO and Au nanoparticles on the PDPB; the Au-1-GO2/PDPB (2.0 wt% GO and 1.0 wt% Au) composite displayed the best photocatalytic activity among all the catalysts. Our study provides a facile way to prepare inorganic-organic composites for the synchronous photocatalytic removal of heavy metal ions and organic pollutants. (C) 2018, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available