4.8 Article

An enzymatic immunoassay microfluidics integrated with membrane valves for microsphere retention and reagent mixing

Journal

BIOSENSORS & BIOELECTRONICS
Volume 35, Issue 1, Pages 147-154

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2012.02.034

Keywords

Integrated microfluidics; Membrane mixer; Superparamagnetic microsphere; Enzymatic immunoassay

Funding

  1. National Natural Science Foundation of China [20975082, 20775059, 21175107, 31100726]
  2. Ministry of Education of the People's Republic of China [NCET-08-0464]
  3. State Forestry Administration of the People's Republic of China [200904004]
  4. Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry
  5. Northwest AF University

Ask authors/readers for more resources

The present study presents a new microfluidic device integrated with pneumatic microvalves and a membrane mixer for enzyme-based immunoassay of acute myocardial infarction (AMI) biomarkers, namely, myoglobin, and heart-type fatty acid binding protein (H-FABP). Superparamagnetic microspheres with carboxyl groups on their surfaces were used as antibody solid carriers. A membrane mixer consisting of four psi-type membrane valves was assembled under the reaction chamber for on-chip performing microsphere trapping and reagent mixing. The entire immunoassay process, including microsphere capture, reagent input, mixing, and subsequent reaction, was accomplished on the device either automatically or manually. The post-reaction substrate resultant was analyzed using a microplate reader. The results show that the average absorbance value is correlated with the concentration of cardiac markers, in agreement with the results obtained using a conventional microsphere-based immunoassay; this indicated that the proposed on-chip immunoassay protocol could be used to detect both myoglobin and H-FABP. The minimum detectable concentration is 5 ng/mL for myoglobin and 1 ng/mL for H-FABP. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available