4.8 Review

Dielectrophoretic platforms for bio-microfluidic systems

Journal

BIOSENSORS & BIOELECTRONICS
Volume 26, Issue 5, Pages 1800-1814

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2010.09.022

Keywords

Dielectrophoresis; Microfluidics; Biosensors; Lab-on-a-chip; Bioparticles; Cell

Ask authors/readers for more resources

Dielectrophoresis, the induced motion of polarisable particles in a nonuniform electric field, has been proven as a versatile mechanism to transport, accumulate, separate and characterise micro/nano scale bioparticles in microfluidic systems. The integration of DEP systems into the microfluidics enables the inexpensive, fast, highly sensitive, highly selective and label-free detection and analysis of target bioparticles. This review provides an in-depth overview of state-of-the-art dielectrophoretic (DEP) platforms integrated into microfluidics aimed towards different biomedical applications. It classifies the current DEP systems in terms of different microelectrode configurations and operating strategies devised to generate and employ DEP forces in such processes, and compares the features of each approach. Finally, it suggests the future trends and potential applications of DEP systems in single cell analysis, stem cell research, establishing novel devices, and realising fully DEP-activated lab-on-a-chip systems. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available