4.8 Article

An amplified surface plasmon resonance turn-on sensor for mercury ion using gold nanoparticles

Journal

BIOSENSORS & BIOELECTRONICS
Volume 30, Issue 1, Pages 235-240

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2011.09.018

Keywords

Mercury ion; Surface plasmon resonance; Thymine-thymine mismatch; Turn-on detection; Hairpin probe

Funding

  1. Department of Health, Executive Yuan [DOH99-TD-N-111-009]

Ask authors/readers for more resources

Inorganic mercury ion (Hg2+) has been shown to coordinate to DNA duplexes that feature thymine-thymine (T-T) base pair mismatches. This observation suggests that an Hg2+-induced conformational change in a single-stranded DNA molecule can be used to detect aqueous Hg2+. Here, we have developed an analytical method using surface plasmon resonance (SPR) to develop a highly selective and sensitive detection technique for Hg2+ that takes advantage of T-Hg2+-T coordination chemistry. The general concept used in this approach is that the turn-on reaction of a hairpin probe via coordination of Hg2+ by the T-T base pair results in a substantial increase in the SPR response, followed by specific hybridization with a gold nanoparticle probe to amplify the sensor performance. Meanwhile, the limit of detection is 1 nM, which is lower than other recently developed techniques. A linear correlation is observed between the measured SPR reflectivity and the logarithm of the Hg2+ concentration over the concentration range of 5-5000 nM. Additionally, the SPR system provides high selectivity for Hg2+ in the presence of other divalent metal ions up to micromolar concentration levels. The proposed approach is also successfully utilized for the determination of Hg2+ in water samples. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available