4.8 Article

Magnetic molecularly imprinted nanoparticles for recognition of lysozyme

Journal

BIOSENSORS & BIOELECTRONICS
Volume 26, Issue 2, Pages 301-306

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2010.08.044

Keywords

Molecular recognition; Magnetic susceptibility; Surface imprinting; Environmental response; Lysozyme

Funding

  1. National Nature Science Foundation of China [30771807]
  2. National Basic research Grant (973) of China [2009CB320301]
  3. Nature Science Foundation of Hubei province [2008CDB175]

Ask authors/readers for more resources

Molecular imprinting is an attractive technique for preparing mimics of natural, biological receptors. Nevertheless, the imprinting of macromolecule remains a challenge due to their bulkiness and sensitivity to denaturation. In this work, we presented a method for preparing multifunctional lysozyme-imprinted nanoparticles (magnetic susceptibility, molecular recognition and environmental response). The magnetic susceptibility was imparted through the successful encapsulation of Fe3O4 nanoparticles. Selective lysozyme recognition depended on molecularly imprinted film. Moreover, it was also a hydrophilic stimuli-responsive polymer, which could undergo a reversible change of imprinted cavity in response to a small change in the environmental conditions. Thus, magnetic molecularly imprinted nanoparticles had high adsorption capacity (0.11 mg mg(-1)), controlled selectivity and direct magnetic separation (22.1 emu g(-1)) in crude samples. After preconcentration and purification with magnetic MIPs nanopartidies, a sensitive chemiluminescence method was developed for determination of lysozyme in human serum samples. The results indicated that the spiked recoveries were changed from 92.5 to 113.7%, and the RSD was lower than 11.8%. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available