4.8 Article

Nanomaterial-amplified signal off/on electrogenerated chemiluminescence aptasensors for the detection of thrombin

Journal

BIOSENSORS & BIOELECTRONICS
Volume 26, Issue 2, Pages 754-759

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2010.06.044

Keywords

Aptasensor; Electrogenerated chemiluminescence; Thrombin; Gold nanoparticles; Single-walled carbon-nanotubes

Funding

  1. National Science Foundation of China [20775046, 90607016, 20975065]

Ask authors/readers for more resources

Two electrogenerated chemiluminescence (ECL) aptasensors for the detection of thrombin were developed using the thrombin binding aptamer (TBA) taken as a molecular recognition element and nanomaterial as a carrier of the ECL capture/signal probe. In the signal off aptasensor, the thiolated capture probe (ss-DNA, 12-mer) was self-assembled on the gold nanoparticles (GNPs) which were self-assembled on the surface of gold electrode, and hybridized with six-base segment of the ss-DNA sequence (Tgt-aptamer, 21-mer) containing TBA-I (SS-DNA, 15-mer) tagged with ruthenium complex, producing a high ECL intensity. Introduction of the analyte thrombin triggered the dissociation of the Tgt-aptamer tagged with ruthenium complex from the aptasensors, led to significantly decrease in ECL intensity. The decreased ECL intensity was in proportion to the concentration of thrombin in a range from 2.7 x 10(-12) to 2.7 x 10(-9) M with a detection limit of 8 x 10(-13) M. In the signal on aptasensor, the thiolated TBA-I was self-assembled on the gold electrode for capturing thrombin onto the electrode and then the TBA-II (ss-DNA, 29-mer) labeled with single-walled carbon-nanotubes (SWNT)-ECL tag was bound with epitope of thrombin, producing a high ECL intensity. The increased ECL intensity was linearly with the concentration of thrombin from 1.0 x 10(-14) M to 1.0 x 10(-11) M with a detection limit of 3 x 10(-15) M. The present work demonstrates that using nanomaterial as a carrier for capture probe and signal probe is a promising way to amplify the ECL signal and to improve the sensitivity of the aptasensors. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available