4.8 Article

Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling

Journal

BIOSENSORS & BIOELECTRONICS
Volume 25, Issue 10, Pages 2290-2295

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2010.03.014

Keywords

Electrochemiluminescence; Immunoassay; Immunosensor; Human immunoglobulin G luminol; functionalized gold nanoparticles; Multilabeling

Funding

  1. National Natural Science Foundation of P.R. China [20625517, 20573101]
  2. Chinese Academy of Sciences

Ask authors/readers for more resources

An ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol functionalized gold nanoparticle (AuNP) labeling was developed using human immunoglobulin G (hIgG) as a model analyte. The primary antibody biotin-conjugated goat-anti-human IgG was first immobilized on a streptavidin coated AuNP modified electrode, then the antigen (human IgG) and the luminol functionalized AuNP-labeled second antibody were conjugated successively to form a sandwich-type immunocomplex, i.e. immunosensor. ECL was carried out with a double-step potential in carbonate buffer solution containing 1.0 mmol/L H2O2. Since thousand of luminol molecules were coated on the surface of AuNPs to realize labeling of multiple molecules with CL activity at a single antibody and the amplification of AuNPs and biotin-streptavidin system was utilized, luminol ECL signal could be enhanced greatly, finally resulting in extremely high sensitivity. The ECL method shows a detection limit of 1.0 pg/mL (S/N = 3) for hIgG, which is superior to all previously reported methods for the determination of hIgG. Moreover, the proposed method is also simple, stable, specific, and time-saving, avoiding the complicated stripping procedure during CL detection and the uncontrollable synthesis of irregular nanoparticles compared with other chemiluminescence immunoassay based on AuNP labeling. Additionally, the labeling procedure is also superior to that of other reported multilabeling strategies, such as Ru complex-encapsulated polymer microspheres, and most of Ru complex-encapsulated liposomes in simplicity, stability, labeling property and practical applicability. Finally, the proposed method has been successfully applied to the detection of hIgG in human serums. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available