4.8 Article

Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor

Journal

BIOSENSORS & BIOELECTRONICS
Volume 25, Issue 4, Pages 820-825

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2009.08.031

Keywords

Nanowire; Biosensor; Gene mutation sensing; BRAF

Ask authors/readers for more resources

We have developed a silicon nanowire field-effect transistor (NWFET) that allows deoxyribonucleic acid (DNA) biosensing. The nanowire (NW) was fabricated on a silicon-on-insulator wafer to provide effective ohmic contact. The NWFET sensor displayed n-channel depletion characteristics. To demonstrate the sensing capacity of the NWFET, we employed the BRAF(V599E) mutation gene, which correlates to the occurrence of cancers, as the target DNA sequence. The threshold voltage of the NWFET increased when the mutation gene was hybridized with the capture DNA strands on the nanowire, and decreased to the original level after de-hybridization of the gene. The shift in the drain current-gate voltage (ID-VG) curves revealed that the electrical signal had a logarithmic relationship with respect to the concentration of the mutation gene of up to six orders of magnitude, with the detection limit in the sub-femtomolar level. The detection results of mismatched DNA sequences, including one- and five-base-mismatched DNA strands, could be distinguished from complementary DNA gene by this sensor. The excellent electrical results obtained using this label-free NWFET sensor suggest that such devices might be potentially useful tools for biological research and oncogene screening. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available