4.8 Article Proceedings Paper

Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor

Journal

BIOSENSORS & BIOELECTRONICS
Volume 24, Issue 5, Pages 1286-1291

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2008.07.047

Keywords

Tetragonal pyramid-shaped porous ZnO; Direct electrochemistry; Glucose oxidase; Glucose; Biosensors

Ask authors/readers for more resources

A tetragonal pyramid-shaped porous ZnO (TPSP-ZnO) nanostructure is used for the immobilization, direct electrochemistry and biosensing of proteins. The prepared ZnO has a large surface area and good biocompatibility. Using glucose oxidase (GOD) as a model, this shaped ZnO is tested for immobilization of proteins and the construction of electrochemical biosensors with good electrochemical performances. The interaction between GOD and TPSP-ZnO is examined by using AFM, N-2 adsorption isotherms and electrochemical methods. The immobilized GOD at a TPSP-ZnO-modified glassy carbon electrode shows a good direct electrochemical behavior, which depends on the properties of the TPSP-ZnO. Based on a decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen, the proposed biosensor exhibits a linear response to glucose concentrations ranging from 0.05 to 8.2 mM with a detection limit of 0.01 mM at an applied potential of -0.50 V which has better biosensing properties than those from other morphological ZnO nanoparticles. The biosensor shows good stability, reproducibility, low interferences and can diagnose diabetes very fast and sensitively. Such the TPSP-ZnO nanostructure provides a good matrix for protein immobilization and biosensor preparation. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available