4.6 Review

Signalling to actin: role of C3G, a multitasking guanine-nucleotide-exchange factor

Journal

BIOSCIENCE REPORTS
Volume 31, Issue 4, Pages 231-244

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BSR20100094

Keywords

actin cytoskeleton; C3G (Crk SH3-domain-binding guanine-nucleotide-releasing factor); differentiation; embryonic development; GTPase; signalling

Ask authors/readers for more resources

C3G (Crk SH3-domain-binding guanine-nucleotide-releasing factor) is a ubiquitously expressed member of a class of molecules called GEFs (guanine-nucleotide-exchange factor) that activate small GTPases and is involved in pathways triggered by a variety of signals. It is essential for mammalian embryonic development and many cellular functions in adult tissues. C3G participates in regulating functions that require cytoskeletal remodelling such as adhesion, migration, maintenance of cell junctions, neurite growth and vesicle traffic. C3G is spatially and temporally regulated to act on Ras family GTPases Rap1, Rap2, R-Ras, TC21 and Rho family member TC10. Increased C3G protein levels are associated with differentiation of various cell types, indicating an important role for C3G in cellular differentiation. In signalling pathways, C3G serves functions dependent on catalytic activity as well as protein interaction and can therefore integrate signals necessary for the execution of more than one cellular function. This review summarizes our current knowledge of the biology of C3G with emphasis on its role as a transducer of signals to the actin cytoskeleton. Deregulated C3G may also contribute to pathogenesis of human disorders and therefore could be a potential therapeutic target.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available