4.5 Review

Snowmelt Infiltration and Macropore Flow in Frozen Soils: Overview, Knowledge Gaps, and a Conceptual Framework

Journal

VADOSE ZONE JOURNAL
Volume 17, Issue 1, Pages -

Publisher

SOIL SCI SOC AMER
DOI: 10.2136/vzj2018.04.0084

Keywords

-

Funding

  1. Alberta Innovates
  2. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

Macropore flow in frozen soils plays a critical role in partitioning snowmelt at the land surface and modulating snowmelt-driven hydrological processes. Previous descriptions of macropore flow processes in frozen soil do not explicitly represent the physics of water and heat transfer between macropores and the soil matrix, and there is a need to adapt recent conceptual and numerical models of unfrozen macropore flow to account for frozen ground. Macropores remain air filled under partially saturated conditions, allowing preferential flow and meltwater infiltration prior to ground thaw. Nonequilibrium gravity-driven flow can rapidly transport snowmelt to depths below the frost zone or, alternatively, infiltrated water may refreeze in macropores and restrict preferential flow. As with unfrozen soils, models of water movement in frozen soil that rely solely on diffuse flow concepts cannot adequately represent unsaturated macropore hydraulics. Dual-domain descriptions of unsaturated flow that explicitly define macropore hydraulic characteristics have been successful under unfrozen conditions but need refinement for frozen soils. In particular, because pore connectivity and hydraulic conductivity are influenced by ice content, modeling schemes specifying macropore-matrix interactions and refreezing of infiltrating water are critical. This review discusses the need for research on the interacting effects of macropore flow and soil freeze-thaw and the integration of these concepts into a framework of coupled heat and water transfer. As a result, it proposes a conceptual model of unsaturated flow in frozen macroporous soils that assumes two interacting domains (macropore and matrix) with distinct water and heat transfer regimes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available