4.4 Article

S-Adenosyl-L-methionine Activates Actinorhodin Biosynthesis by Increasing Autophosphorylation of the Ser/Thr Protein Kinase AfsK in Streptomyces coelicolor A3(2)

Journal

BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY
Volume 75, Issue 5, Pages 910-913

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1271/bbb.100873

Keywords

Streptomyces coelicolor; S-adenosyl-L-methionine (SAM); actinorhodin; autophosphorylation; serine/threonine (Ser/Thr) kinase

Funding

  1. Rural Development Administration, Republic of Korea [PJ0071912011]
  2. Brain Korea 21 Project (BK21)

Ask authors/readers for more resources

S-Adenosyl-L-methionine (SAM) is one of the major methyl donors in all living organisms. The exogenous treatment with SAM leads to increased actinorhodin production in Streptomyces coelicolor A3(2). In this study, mutants from different stages of the AfsK-AfsR signal transduction cascade were used to test the possible target of SAM. SAM had no significant effect on actinorhodin production in afsK, afsR, afsS, or actII-open reading frame 4 (ORF4) mutant. This confirms that afsK plays a critical role in delivering the signal generated by exogenous SAM. The afsK-pHJL-KN mutant did not respond to SAM, suggesting the involvement of the C-terminal of AfsK in binding with SAM. SAM increased the in vitro autophosphorylation of kinase AfsK in a dose-dependent manner, and also abolished the effect of decreased actinorhodin production by a Ser/Thr kinase inhibitor, K252a. In sum, our results suggest that SAM activates actinorhodin biosynthesis in S. coelicolor M130 by increasing the phosphorylation of protein kinase AfsK.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available