4.5 Article

The heat capacity and entropy of the lithium silicides Li17Si4 and Li16.42Si4 in the temperature range from (2 to 873) K

Journal

JOURNAL OF CHEMICAL THERMODYNAMICS
Volume 85, Issue -, Pages 178-190

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jct.2015.01.004

Keywords

Lithium silicide; Heat capacity; Entropy

Funding

  1. Deutsche Forschungsgemeinschaft DFG [WeNDeLIB - SPP 1473]

Ask authors/readers for more resources

This work presents the heat capacities and standard entropies of the recently described lithium rich silicide phases Li17Si4 and Li16.42Si4 as a function of temperature in the range from (2 to 873) K. The measurements were carried out using two different calorimeters. The heat capacities were determined in the range from T = (2 to 300) K by a relaxation technique using a Physical Properties Measurement System (PPMS) from Quantum Design, and in the range from T = (283 to 873) K by means of a Sensys DSC from Setaram applying the C-p-by-step method. The experimental data are given with an accuracy of (1 to 2)% above T = 20 K and the error increases up to 7% below T = 20 K. The results of the measurements at low temperatures permit the calculation of additional thermodynamic parameters such as the standard entropy as well as the temperature coefficients of electronic and lattice contributions to the heat capacity. Additionally, differential scanning calorimetric (DSC) measurements were carried out to verify the phase transition temperatures of the studied lithium silicide phases. The results represent a significant contribution to the data basis for thermodynamic calculations (e.g. CALPHAD) and to the understanding of the phase equilibria in the (Li + Si) system, especially in the lithium rich region. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available