4.5 Article

Mechanically stable surface-hydrophobilized chitosan nanofibrous barrier membranes for guided bone regeneration

Journal

BIOMEDICAL MATERIALS
Volume 13, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1748-605X/aa853c

Keywords

bone regeneration; chitosan; barrier membranes

Funding

  1. Biomaterials Applications of Memphis (BAM) laboratories at UoM-UTHSC
  2. FedEx Institute of Technology, UoM, Memphis, TN, USA
  3. Marine Economy Innovation and Development Project [GD2012-D01-002]
  4. Marine Fishery Science and Technology Promotion Project of Guangdong [A1201301C06]
  5. Marine Strategic Emerging Industry Special Project [GD2013-B02-003]
  6. [NNSFC31570964]
  7. [201508020126]
  8. [2013 B090200007]
  9. [20114401110003]
  10. [JCYJ20130401174221011]

Ask authors/readers for more resources

The use of chitosan based nanofiber membranes in guided bone regeneration (GBR) is limited by its uncontrolled swelling and mechanical instability in aqueous environments. This paper describes the significantly improved stability and properties of surface butyrylated chitosan nanofiber (BCSNF) membranes that greatly enhance their potential in GBR. The BCSNF membranes exhibited an overall degree of substitution of 1.61, an average diameter of 99.3 +/- 33.7 nm, and a 75% decrease in swelling with an approximate doubling in suture pull out strengths as compared to unmodified fibers in aqueous environment. In a five week phosphate-buffered saline-lysozyme degradation study, it was found that the remaining mass fraction of BCSNF membranes was 11.5% more than that of unmodified fibers. In vitro, the BCSNF membranes were found to support the adhesion and proliferation of fibroblasts and were cell occulusive. In vivo, the BCSNF membranes were found to significantly improve the regeneration of a rat calvarial critical size defect in a 12 week healing period and showed better barrier function than commercially available collagen membranes with little soft tissue penetration through the membranes. Taken together, these data provide strong scientific evidence for use of BCSNF membranes in GBR applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available