4.4 Article

A morphology independent approach for identifying dividing adult neural stem cells in the mouse hippocampus

Journal

DEVELOPMENTAL DYNAMICS
Volume 247, Issue 1, Pages 194-200

Publisher

WILEY
DOI: 10.1002/dvdy.24545

Keywords

adult neurogenesis; cerebral cortex; neural stem cell; hippocampus; neurogenesis

Funding

  1. Australian Research Council [DP160100368, FT120100170]
  2. Mater Foundation
  3. Australian Postgraduate Awards

Ask authors/readers for more resources

Background: Type 1 adult hippocampal neural stem cells (AH-NSCs) continue to generate neurons throughout life, albeit at a very low rate. The relative quiescence of this population of cells has led to many studies investigating factors that may increase their division. Current methods of identifying dividing AH-NSCs in vivo require the identification and tracing of radial processes back to nuclei within the subgranular zone. However, caveats to this approach include the time-intensive nature of identifying AH-NSCs with such a process, as well as the fact that this approach ignores the relatively more active population of horizontally oriented AH-NSCs that also reside in the subgranular zone. Results: Here we describe, and then verify using Hes5::GFP mice, that labeling for the cell cycle marker Ki67 and selection against the intermediate progenitor cell marker TBR2 (Ki67(+ve); TBR2(-ve) nuclei) is sufficient to identify dividing horizontally and radially oriented AH-NSCs in the adult mouse hippocampus. Conclusions: These findings provide a simple and accurate way to quantify dividing AH-NSCs in vivo using a morphology-independent approach that will facilitate studies into neurogenesis within the hippocampal stem cell niche of the adult brain. Developmental Dynamics 247:194-200, 2018. (c) 2017 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available