4.8 Article

A skin-inspired tactile sensor for smart prosthetics

Journal

SCIENCE ROBOTICS
Volume 3, Issue 22, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scirobotics.aat0429

Keywords

-

Categories

Funding

  1. National Natural Foundation of China [61704177, 51525103, 11474295, 61774161]
  2. China International Cooperation Project [2016YFE0126700]
  3. National Key Technologies R&D Program of China [2016YFA0201102]
  4. Public Welfare Technical Applied Research Project of Zhejiang Province [2017C31100]
  5. Ningbo Major Science and Technology Projects [2017B10018]
  6. Ningbo Science and Technology Innovation Team [2015B11001]
  7. Natural Science Foundation of Ningbo [2017A610097, 2017A610093]

Ask authors/readers for more resources

Recent achievements in the field of electronic skin have provided promising technology for prosthetic systems. However, the development of a bionic tactile-perception system that exhibits integrated stimuli sensing and neuron-like information-processing functionalities in a low-pressure regime remains a challenge. Here, we demonstrate a tactile sensor for smart prosthetics based on giant magneto-impedance (GMI) material embedded with an air gap. The sensor exhibits a high sensitivity of 120 newton(-1) (or 4.4 kilopascal(-1)) and a very low detection limit of 10 micronewtons (or 0.3 pascals). The integration of the tactile sensor with an inductance-capacitance (LC) oscillation circuit enabled direct transduction of force stimuli into digital-frequency signals. The frequency increased with the force stimuli, consistent with the relationship between stimuli and human responses. The minimum loading of 50 micronewtons (or 1.25 pascals), which is less than the sensing threshold value of human skin, was also encoded into the frequency, similar to the pulse waveform of humans. The proposed tactile sensor not only showed desirable sensitivity and low detection limit but also exhibited transduction of digital-frequency signals like human stimuli responses. These features of the GMI-based tactile sensor show potential for its applications in smart prosthetics, especially prosthetic limbs that can functionally replace natural limbs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available