4.8 Article

Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly [2,5-benzimidazole] (ABPBI) impregnated non-woven fabric filter

Journal

BIORESOURCE TECHNOLOGY
Volume 128, Issue -, Pages 14-21

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2012.10.013

Keywords

Microbial fuel cell (MFC); Separator; Non-woven fabric filter; ABPBI; Membrane electrode assembly (MEA)

Funding

  1. Eco-technopia 21 project of the Ministry of Environment
  2. Mid-career Researcher Program through an NRF
  3. MEST [2009-0060376]
  4. Korea Ministry of Environment (MOE)
  5. RCUK Energy Programme
  6. SUPERGEN Biological Fuel Cell project [EP/D047943/1]
  7. [68-3A75-3-150]
  8. EPSRC [EP/H019480/1] Funding Source: UKRI
  9. Engineering and Physical Sciences Research Council [EP/H019480/1] Funding Source: researchfish

Ask authors/readers for more resources

A membrane electrode assembly (MEA) microbial fuel cell (MFC) with a non-woven paper fabic filter (NWF) was investigated as an alternative to a proton exchange membrane (PEM) separator. The MFC with a NWF generated a cell voltage of 545 mV and a maximum power density of 1027 mW/m(3), which was comparable to that obtained from MFCs with a PEM (551 my, 609 mW/m(3)). The MFC with a NWF showed stable cell performance (550 mV) over 300 days, whereas, the MFC with PEM performance decreased significantly from 551 mV to 415 mV due to biofilm formation and chemical precipitation on the membrane surface. Poly [2,5-benzimidazole] (ABPBI) was evaluated with respect to its capacity to increased proton conductivity and contact between separator and electrodes. The overall performance of the MFC with ABPBI was improved by enhancing the ion conductivity and steric contact, producing 766 mW/m(3) at optimum loading of 50 mg ABPBI/cm(2). (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available