4.8 Article

Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis

Journal

BIORESOURCE TECHNOLOGY
Volume 109, Issue -, Pages 163-172

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2012.01.001

Keywords

TGA-MS; Pyrolysis; Lignocellulosic biomass; Microalgae; Kinetics model

Funding

  1. Ministry of Science and Innovation of Spain (CENIT-VIDA)

Ask authors/readers for more resources

The pyrolysis characteristics of three lignocellulosic biomasses (fir wood, eucalyptus and pine bark) and a marine biomass (Nannochloropsis gaditana microalgae) were investigated by thermogravimetric analysis coupled with mass spectrometry (TGA-MS). Thermal degradation of lignocellulosic biomass was divided into four zones, corresponding to the decomposition of their main components (cellulose, hemicellulose and lignin) and a first step associated to water removal. Differences in volatile matter and cellulose content of lignocellulosic species resulted in different degradation rates. Microalgae pyrolysis occurred in three stages due to the main components of them (proteins), which are greatly different from lignocellulosic biomass. Heating rate effect was also studied. The main gaseous products formed were CO2, light hydrocarbons and H2O. H-2 was detected at high temperatures, being associated to secondary reactions (char self-gasification). Pyrolysis kinetics were studied using a multiple-step model. The proposed model successfully predicted the pyrolytic behaviour of these samples resulting to be statistically meaningful. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available