4.6 Article

Searching for topological Fermi arcs via quasiparticle interference on a type-II Weyl semimetal MoTe2

Journal

NPJ QUANTUM MATERIALS
Volume 3, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41535-018-0112-5

Keywords

-

Funding

  1. US Department of Energy, Scanned Probe Division [DE-SC0014335]
  2. Science and Technology Commission of Shanghai Municipality (STCSM) [18QA1403100]
  3. ShanghaiTech University
  4. US Department of Energy [DE-SC0014208]

Ask authors/readers for more resources

Weyl semimetals display a novel topological phase of matter where the Weyl nodes emerge in pairs of opposite chirality and can be seen as either a source or a sink of Berry curvature. The exotic effects in Weyl semimetals, such as surface Fermi arcs and the chiral anomaly, make them a new playground for exploring novel functionalities. Further exploiting their potential applications requires dear understanding of their topological electronic properties. Here we report a Fourier transform scanning tunneling spectroscopy (FT-STS) study on a type-II Weyl semimetal candidate MoTe2 whose Weyl points are predicated to be located above Fermi level. Although its electronic structure below the Fermi level has been identified by angle resolved photo emission spectroscopy, by comparing our experimental data with first-principles calculations, we are able to identify the origins of multiple scattering channels both below and above Fermi level. Our calculations also show the existence of both trivial and topological arc-like states above the Fermi energy. In the FT-STS experiments, we have observed strong signals from intra-arc scatterings as well as from the scattering between the arc-like surface states and the projected bulk states. A detailed comparison between our experimental observations and calculated results reveals the trivial and non-trivial scattering channels are difficult to distinguish in this compound. Interestingly, we find that the broken inversion symmetry changes the terminating states on the two inequivalent surfaces, which in turn changes the relative strength of the scattering channels observed in the FT-STS images on the two surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available