3.9 Article

Biolytic extraction of poly(3-hydroxybutyrate) from Bacillus megaterium Ti3 using the lytic enzyme of Streptomyces albus Tia1

Journal

JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY
Volume 16, Issue 2, Pages 265-271

Publisher

SPRINGERNATURE
DOI: 10.1016/j.jgeb.2018.07.004

Keywords

-

Funding

  1. Council of Scientific and Industrial Research, New Delhi [9/1115(0002)2K14 EMR-I]

Ask authors/readers for more resources

The applicability of Streptomyces sp. cell lytic enzymes for devising a simple and competent biological polyhydroxyalkanoate (PHA) recovery approach from Bacillus megaterium cells was investigated. B. megaterium strain Ti3 produced 50% (w/w) PHA using glucose as carbon source. The intracellular PHA was recovered employing a non-PHA accumulating actinomycetes (Tia1) identified as Streptomyces albus, having potent lytic activity against living and heat inactivated B. megaterium. Interestingly, maximum biomass (2.53 +/- 0.6 g/L by 24 h) of the lytic actinomycete was obtained in PHA production medium itself thus circumventing the prior actinomycete acclimatization just by co-inoculation with B. megaterium as an inducer. Maximum lytic activity was observed at pH 6.0, 40 degrees C, 220 mg of biomass and 33.3 mL of concentrated culture filtrate in a 100 mL reaction mixture. Preliminary biochemical investigations confirmed the proteolytic and caseinolytic nature of the lytic enzyme. PHA yield of 0.55 g/g by co-inoculation extraction approach was comparable with the conventional sodium hypochlorite based extraction method. Interestingly, S. albus also demonstrated a broad spectrum lytic potential against varied Gram-negative and Gram-positive PHA producers highlighting the extensive applicability of this biolytic PHA recovery approach. The lytic enzyme retained almost 100% relative activity on storage at -20 degrees C upto two months. H-1 Nuclear magnetic resonance analysis of the extracted polymer confirmed it as a homopolymer composed of 3-hydroxybutyrate monomeric units. This is the first report on Streptomyces sp. based biological and eco-friendly, intracellular PHA recovery from Bacillus spp. (C) 2018 Production and hosting by Elsevier B.V. on behalf of Academy of Scientific Research & Technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available