3.9 Article

In silico structural homology modeling of nif A protein of rhizobial strains in selective legume plants

Journal

JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY
Volume 16, Issue 2, Pages 731-737

Publisher

SPRINGERNATURE
DOI: 10.1016/j.jgeb.2018.06.006

Keywords

-

Ask authors/readers for more resources

Symbiosis is a complex genetic regulatory biological evolution which is highly specific pertaining to plant species and microbial strains. Biological nitrogen fixation in legumes is a functional combination of nodulation by nod genes and regulation by nif, fix genes. Three rhizobial strains (Rhizobium leguminosarum, Bradyrhizobium japonicum, and Mesorhizobium ciceri) that we considered for in silico analysis of nif A are proved to be the best isolates with respect to N-2 fixing for ground nut, chick pea and soya bean (in vitro) out of 47 forest soil samples. An attempt has been made to understand the structural characteristics and variations of nif genes that may reveal the factors influencing the nitrogen fixation. The primary, secondary and tertiary structure of nif A protein was analyzed by using multiple bioinformatics tools such as chou-Fasman, GOR, ExPasy ProtParam tools, Prosa -web. Literature shows that the homology modeling of nif A protein have not been explored yet which insisted the immediate development for better understanding of nif A structure and its influence on biological nitrogen fixation. In the present predicted 3D structure, the nif A protein was analyzed by three different software tools (Phyre2, Swiss model, Modeller) and validated accordingly which can be considered as an acceptable model. However further in silico studies are suggested to determine the specific factors responsible for nitrogen fixing in the present three rhizobial strains. (C) 2018 Production and hosting by Elsevier B.V. on behalf of Academy of Scientific Research & Technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available