4.8 Article

Creep behavior of bagasse fiber reinforced polymer composites

Journal

BIORESOURCE TECHNOLOGY
Volume 101, Issue 9, Pages 3280-3286

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2009.12.072

Keywords

Bagasse; Plastics, Composite; Creep; Modeling; Time-temperature superposition

Funding

  1. USDA [68-3A75-6-508]

Ask authors/readers for more resources

The creep behavior of bagasse-based composites with virgin and recycled polyvinyl chloride (B/PVC) and high density polyethylene (B/HDPE) as well as a commercial wood and HDPE composite decking material was investigated. The instantaneous deformation and creep rate of all composites at the same loading level increased at higher temperatures. At a constant load level, B/PVC composites had better creep resistance than B/HDPE systems at low temperatures. However, B/PVC composites showed greater temperature-dependence. Several creep models (i.e., Burgers model, Findley's power law model, and a simpler two-parameter power law model) were used to fit the measured creep data. Time-temperature superposition (TTS) was attempted for long-term creep prediction. The four-element Burgers model and the two-parameter power law model fitted creep curves of the composites well. The TTS principle more accurately predicted the creep response of the PVC composites compared to the HDPE composites. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available