4.7 Article

Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 143, Issue 24, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4938012

Keywords

-

Funding

  1. National Science Foundation [DMR-1203811]

Ask authors/readers for more resources

The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t(e)) and hole (t(h)) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t(e)t(h) and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such p-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in null-aggregates which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available