4.8 Article

Molecular characterization and molasses fermentation performance of a wild yeast strain operating in an extremely wide temperature range

Journal

BIORESOURCE TECHNOLOGY
Volume 100, Issue 20, Pages 4854-4862

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2009.05.011

Keywords

Ethanol production; Immobilization; Saccharomyces cerevisiae; Brewer's spent grains; Volatiles

Funding

  1. Greek Ministry of Development-General Secretariat of Research and Technology
  2. E.U.-European Social Fund

Ask authors/readers for more resources

Molasses fermentation performance by both a cryotolerant and a thermophilic yeast (strain-AXAZ-1) isolated from grapes in Greece was evaluated in an extremely wide temperature range (3-40 degrees C). Sequence analysis of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions assigned isolate to Saccharomyces cerevisiae. Restriction fragment length polymorphism of the mitochondrial DNA showed that strain AXAZ-1 is genetically divergent compared to other wild strains of Greek origin or commercial yeast starters. Yeast cells growing planktonically were capable of fermentation in a wide temperature spectrum, ranging from 3 degrees C to 38 degrees C. Immobilization of yeast on brewer's spent grains (BSG) improved the thermo-tolerance of the strain and enabled fermentation at 40 degrees C. Time to complete fermentation with the immobilized yeast ranged from 20 days at 3 to 38 h at 40 degrees C. The daily ethanol productivity reached maximum (58.1 g/L) and minimum (2.5 g/L) levels at 30 and 3 degrees C, respectively. The aroma-related compounds' profiles of immobilized cells at different fermentation temperatures were evaluated by using solid phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS). Molasses fermentation resulted in a high quality fermentation product due to the low concentrations of higher and amyl alcohols at all temperatures tested. Strain AXAZ-1 is very promising for the production of ethanol from low cost raw materials, as it was capable to perform fermentations of high ethanol concentration and productivities in both low and high temperatures. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available