4.7 Article

Bloch-Redfield equations for modeling light-harvesting complexes

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 142, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4907370

Keywords

-

Funding

  1. Alexander von Humboldt Professorship
  2. EU STREP PAPETS
  3. EU Integrating Project SIQS

Ask authors/readers for more resources

We challenge the misconception that Bloch-Redfield equations are a less powerful tool than phenomenological Lindblad equations for modeling exciton transport in photosynthetic complexes. This view predominantly originates from an indiscriminate use of the secular approximation. We provide a detailed description of how to model both coherent oscillations and several types of noise, giving explicit examples. All issues with non-positivity are overcome by a consistent straightforward physical noise model. Herein also lies the strength of the Bloch-Redfield approach because it facilitates the analysis of noise-effects by linking them back to physical parameters of the noise environment. This includes temporal and spatial correlations and the strength and type of interaction between the noise and the system of interest. Finally, we analyze a prototypical dimer system as well as a 7-site Fenna-Matthews-Olson complex in regards to spatial correlation length of the noise, noise strength, temperature, and their connection to the transfer time and transfer probability. (c) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available