4.8 Article

Chelating efficiency and thermal, mechanical and decay resistance performances of chitosan copper complex in wood-polymer composites

Journal

BIORESOURCE TECHNOLOGY
Volume 99, Issue 13, Pages 5906-5914

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2007.09.086

Keywords

chelating; chemical modification; fungal decay resistance; mechanical and thermal properties; wood-polymer composites

Ask authors/readers for more resources

Wood-polymer composites (WPC) have been extensively used for building products, outdoor decking, automotive, packaging materials, and other applications. WPC is subject to fungal and termite attacks due to wood components enveloped in the thermoplastic matrix. Much effort has been made to improve decay resistance of WPC using zinc borate and other chemicals. In this study, chitosan copper complex (CCC) compounds were used as a potential preservative for wood-HDPE composites. CCC was formulated by reacting chitosan with copper salts under controlled conditions. Inductively coupled plasma (ICP) analytical results indicated that chitosan had high chelating efficiency with copper cations. CCC-treated wood-HDPE composites had a thermal behavior similar to untreated and zinc borate-treated wood-HDPE composites. Incorporation of CCC in wood-HDPE composites did not significantly influence board density of the resultant composites, but had a negative effect on tensile strength at high CCC concentration. In comparison with solid wood and the untreated wood-HDPE composites, 3% CCC-treated wood-HDPE composites significantly improved the decay resistance against white rot fungus Trametes versicolor and brown rot fungus Gloeophyllum trabeum. Especially, CCC-treated wood-HDPE composites were more effectively against the brown rot than the untreated and chitosan-treated wood-HDPE composites. Moreover, CCC-treated wood-HDPE composites performed well as zinc borate-treated wood-HDPE composites on fungal decay resistance. Accordingly, CCC can be effectively used as a preservative for WPC. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available