4.7 Review

Fit-for-purpose block polymer membranes molecularly engineered for water treatment

Journal

NPJ CLEAN WATER
Volume 1, Issue -, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41545-018-0002-1

Keywords

-

Funding

  1. Army Research Office (ARO) through the Polymer Chemistry Program [W911NF-14-1-0229]
  2. National Science Foundation (NSF) through the Interfacial Processes and Thermodynamics Program [1511835]
  3. Chemical and Biological Separations Program [1512089]
  4. CEST/Bayer Pre-Doctoral Research Fellowship at the University of Notre Dame

Ask authors/readers for more resources

Continued stresses on fresh water supplies necessitate the utilization of non-traditional resources to meet the growing global water demand. Desalination and hybrid membrane processes are capable of treating non-traditional water sources to the levels demanded by users. Specifically, desalination can produce potable water from seawater, and hybrid processes have the potential to recover valuable resources from wastewater while producing water of a sufficient quality for target applications. Despite the demonstrated successes of these processes, state-of-the-art membranes suffer from limitations that hinder the widespread adoption of these water treatment technologies. In this review, we discuss nanoporous membranes derived from self-assembled block polymer precursors for the purposes of water treatment. Due to their well-defined nanostructures, myriad chemical functionalities, and the ability to molecularly-engineer these properties rationally, block polymer membranes have the potential to advance water treatment technologies. We focus on block polymer-based efforts to: (1) nanomanufacture large areas of high-performance membranes; (2) reduce the characteristic pore size and push membranes into the reverse osmosis regime; and (3) design and implement multifunctional pore wall chemistries that enable solute-specific separations based on steric, electrostatic, and chemical affinity interactions. The use of molecular dynamics simulations to guide block polymer membrane design is also discussed because its ability to systematically examine the available design space is critical for rapidly translating fundamental understanding to water treatment applications. Thus, we offer a full review regarding the computational and experimental approaches taken in this arena to date while also providing insights into the future outlook of this emerging technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available